Facebook Facebook
Resultados de Pesquisa
Veja todos os resultados
  • Participar
    Entrar
    Registrar
    Pesquisar
    Theme Switcher
    Night Mode

Pesquisar

Conheça novas pessoas, crie conexões e faça novos amigos

  • Feed de Notícias
  • EXPLORAR
  • Páginas
  • Grupos
  • Eventos
  • Blogs
  • Offers
  • Jobs
  • Courses
  • Fóruns
  • Movies
  • Jogos
  • Publicações
  • Blogs
  • Usuários
  • Páginas
  • Grupos
  • Eventos
  • Bao-hua ZHANG adicionou um novo artigo Literature
    2025-10-20 05:09:02 -
    Rotational and Translational Characteristics of Topological Vortices and Antivortices Based on Perspectives from Loops and Knots (1)
    Bao-hua ZHANG Abstract Based on Topological Vortex Theory (TVT), this paper systematically investigates the fundamental characteristics of vortices and their corresponding antivortices in rotational and translational motion. By introducing topological structures such as loops and knots, the dynamical behaviors of vortex-antivortex pairs, including their interaction mechanisms, structural...
    0 Comentários 0 Compartilhamentos 93 Visualizações 0 Anterior
    Faça Login para curtir, compartilhar e comentar!
  • Bao-hua ZHANG adicionou um novo artigo Literature
    2025-10-20 05:13:27 -
    Rotational and Translational Characteristics of Topological Vortices and Antivortices Based on Perspectives from Loops and Knots (2)
    2. Rotational Characteristics of Topological Vortices and Antivortices 2.1 Rotational Direction and Angular Velocity Properties The direction of rotation is a key physical feature distinguishing vortices from antivortices. According to TVT, the rotational direction of a vortex is determined by its topological charge, while that of an antivortex is opposite. Taking optical vortices as an...
    0 Comentários 0 Compartilhamentos 81 Visualizações 0 Anterior
    Faça Login para curtir, compartilhar e comentar!
  • Bao-hua ZHANG adicionou um novo artigo Literature
    2025-10-20 05:22:38 -
    Rotational and Translational Characteristics of Topological Vortices and Antivortices Based on Perspectives from Loops and Knots (3)
    3. Translational Characteristics of Topological Vortices and Antivortices 3.1 Translational Motion and Description via Knot Theory The translational motion of vortices and antivortices can be effectively described by knot theory. This theory focuses on the continuous deformation of vortex trajectories in spacetime, where translational motion corresponds to the overall propagation of these...
    0 Comentários 0 Compartilhamentos 82 Visualizações 0 Anterior
    Faça Login para curtir, compartilhar e comentar!
  • Bao-hua ZHANG adicionou um novo artigo Literature
    2025-10-20 05:27:07 -
    Rotational and Translational Characteristics of Topological Vortices and Antivortices Based on Perspectives from Loops and Knots (4)
    4. Topological Significance of Loops and Knots 4.1 Topological Invariants in Loop Structures As an important topological model for describing vortex-antivortex pairs in three-dimensional space, the stability of loop structures can be characterized by a series of topological invariants. Taking the optical vortex ring as an example, its knot number determines the topological undeformability of...
    0 Comentários 0 Compartilhamentos 81 Visualizações 0 Anterior
    Faça Login para curtir, compartilhar e comentar!
  • Bao-hua ZHANG adicionou um novo artigo Literature
    2025-10-20 05:37:44 -
    Rotational and Translational Characteristics of Topological Vortices and Antivortices Based on Perspectives from Loops and Knots (5)
    5. Conclusion Based on Topological Vortex Theory, this paper systematically studied the characteristic features of vortices and antivortices in rotational and translational motion, and thoroughly explored their intrinsic relationships with topological structures such as loops and knots. The research shows that differences in the rotational direction of vortices and antivortices can induce rich...
    0 Comentários 0 Compartilhamentos 85 Visualizações 0 Anterior
    Faça Login para curtir, compartilhar e comentar!
© 2025 Facebook Portuguese
English Arabic French Spanish Portuguese Deutsch Turkish Dutch Italiano Russian Romaian Portuguese (Brazil) Greek 简体中文 日本語 한국어 繁体中文
Sobre Termos Privacidade Fale Conosco Diretório