The Disciplinary Reconstruction of Replacing Quantum Materials with Topological Materials Based on Topological Vortex Theory (1)

0
935

Bao-hua ZHANG

Abstract

Quantum Materials, as a frontier field in contemporary condensed matter physics, suffer from ambiguity in their core concept "quantum" due to its lack of a strict definition. This leads to conceptual confusion for researchers in theoretical construction and experimental verification, and may even give rise to pseudoscientific issues (such as "observation alters reality" or "spooky action-at-a-distance of quantum entanglement"). In contrast, Topological Materials, based on mathematical topological invariants, possess a clear physical framework. In particular, the strictly defined topological vortex and anti-vortex provide more precise theoretical tools for studying the hierarchical structure of matter. Starting from the topological vortex theory, this paper demonstrates the necessity of replacing Quantum Materials with Topological Materials and explores their potential applications in particle physics, materials science, and cosmology.

Keywords: Topological Materials; Quantum Materials; Topological Vortex; Disciplinary Reconstruction; Topological Invariant

1. The Ambiguity of Quantum Materials and the Clarity of Topological Materials

1.1 Conceptual Dilemmas of Quantum Materials

The term "Quantum Materials" broadly refers to materials exhibiting quantum effects (such as quantum entanglement, the quantum Hall effect, superconductivity, etc.), but "quantum" itself lacks a rigorous definition. For example:

  1. Quantum Entanglement is often misunderstood as "spooky action-at-a-distance," while it is actually a mathematical description of correlated states.
  2. Quantum Tunneling is frequently overinterpreted as "particles traversing classically forbidden regions," whereas its essence lies in the non-locality of the wave function.
  3. Quantum Decoherence is mistakenly perceived as "wavefunction collapse induced by observation," while it is actually a result of interaction with the environment.

This ambiguity may lead researchers towards unscientific explanations, even spawning "quantum mysticism" (e.g., quantum consciousness, quantum immortality).

1.2 The Rigorous Framework of Topological Materials

Topological Materials are based on mathematical topology, and their core characteristics (such as topological invariants, edge states, vortex structures) have strict definitions:

  1. Topological Vortex: A localized rotational structure possessing an integer topological charge (e.g., magnetic flux vortex, superfluid vortex).
  2. Anti-vortex: A vortex with an opposite topological charge, forming a dual structure with the vortex.
  3. Topological Protection: The stability of vortices is guaranteed by topological invariants (e.g., Chern number, winding number) and is unaffected by perturbations.

This clarity avoids the conceptual confusion introduced by "quantum" and is more suitable as a theoretical foundation for matter research.

Search
Categories
Read More
Fitness
Stainless Steel Scale
New Style Stainless Steel Weighing Scale
By Lee Vincent 2025-09-03 03:33:44 0 2K
Gardening
Animal Vaccines Market Size Analysis, Drivers, Key Factors Forecast, 2021–2032
The global animal vaccines market size was USD 13.90 Billion in 2022 and is expected to register...
By Vandana Manturgekar 2025-08-28 08:20:30 0 2K
Shopping
Daniel Wellington 情侶對錶推薦與選購指南
在眾多時尚鐘錶品牌中,dw 以簡約設計和百搭風格聞名全球。無論是日常穿搭還是正式場合,Daniel Wellington...
By Abv 134 2025-09-26 01:54:17 0 1K
Other
锂电发货
美加海运锂电一手庄
By 子健 张 2025-10-21 06:56:40 0 857
Party
Self-Checkout System Market to Reach USD 13.06 Billion by 2033, Growing at 12.85% CAGR
Self-Checkout System Market Overview The global self-checkout system market size was valued...
By Mahesh Chavan 2025-10-27 05:01:08 0 966