Refuting the Mystification of Quantum Mechanics (2)

0
698

2. The Basic Framework of Topological Vortex Theory

2.1 Space as an Ideal Superfluid

Topological Vortex Theory posits that the essence of physical space is an ideal superfluid that is inviscid, incompressible, and isotropic [3]. This superfluid is not a metaphor but a continuous medium with real physical properties, whose microscopic excitations manifest as topological defects.

2.2 Topological Phase Transitions and the Formation of Spacetime Vortices

When the superfluid is perturbed or under specific boundary conditions, topological phase transitions occur, forming spacetime vortices [2]. These vortices possess stable topological structures, similar to vortex rings in classical fluids but existing within the spacetime background. Their fundamental characteristics include:

(1) Rotational Degrees of Freedom: Coexistence of left-handed and right-handed vortices, constituting a dialectically unified physical entity.

(2) Self-Organization: Vortices interact (e.g., through entanglement, merging, splitting) to form complex spacetime structures [4].

(3) Quantized Features: The circulation, energy, and angular momentum of vortices are naturally discretized, satisfying quantization conditions [1, 4].

2.3 The Foundational Nature of Low-Dimensional Spacetime Matter

Low-dimensional spacetime (e.g., two- or three-dimensional) vortex structures form the basis of high-dimensional spacetime structures. High-dimensional phenomena are essentially collective behaviors of low-dimensional structures. The "particle" behaviors described by quantum mechanics are actually dynamic manifestations of low-dimensional spacetime vortices.

3. Quantum Mechanics: The Mathematical Description of Low-Dimensional Spacetime Vortices

The mathematical formalism of quantum mechanics (e.g., wave functions, operators, eigenvalues) can perfectly describe the dynamics of topological vortices:

(1) The wave function describes the morphology and phase distribution of a vortex.

(2) Quantum entanglement corresponds to topological connections between vortices [5].

(3) The uncertainty principle reflects the constraints of topological stability on vortex structures during measurement.

(4) Spin directly corresponds to the chirality (left/right-handedness) of a vortex.

The key distinction is that Topological Vortex Theory provides explicit geometric entities for these mathematical objects, whereas traditional quantum mechanics remains at the level of mathematical representation.

Rechercher
Catégories
Lire la suite
Crafts
托盘(tray)
Par 清 温 2025-07-30 01:18:12 0 2KB
Shopping
เส้นทางสู่ความพรีเมียมของพอด RELX
ในวันที่ผู้ใช้ต้องการประสบการณ์สูบที่ “นุ่มกว่า–เงียบกว่า–พรีเมียมกว่า”...
Par Ahr Alice 2025-11-25 01:22:01 0 774
Autre
大家好
我来自中国想跟大家交个朋友
Par 细兵 李 2025-10-17 13:19:49 0 1KB
Party
理膚寶水B5全面修復霜|修護肌膚屏障的溫和奇蹟
理膚寶水(La Roche-Posay)作為皮膚科醫師與敏弱肌愛用者心中的保養品牌,其核心系列之一——理膚寶水...
Par ADA ADAD 2025-10-10 02:31:33 0 1KB
Networking
Film Review: Miami 29 - UVA 26
The Miami Hurricanes outlasted the Virginia Cavaliers 29-26 in overtime. The'Canes were...
Par Natasha827 Natasha827 2025-10-16 07:13:22 0 1KB