A Study on Topological Vortex Ring Interactions Based on Möbius Loop and Hopf Link Concepts (5)
                          Posted 2025-10-29 01:45:15
                                                                            
                      
                      
                         0
                      
                      
                  
                         94
                      
                     
                    - Călugăreanu, G. (1959). L'intégrale de Gauss et l'analyse des nœuds tridimensionnels [The Gauss Integral and the Analysis of Three-Dimensional Knots]. Revue de mathématiques pures et appliquées, 4, 5-20.
- Faddeev, L. D., & Niemi, A. J. (1997). Stable knot-like structures in classical field theory. Nature, 387(6628), 58-61.
- Hopf, H. (1931). Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche [On the Mappings of the Three-Dimensional Sphere onto the Spherical Surface]. Mathematische Annalen, 104(1), 637-665.
- Kleckner, D., & Irvine, W. T. M. (2013). Creation and dynamics of knotted vortices. Nature Physics, 9(4), 253-258.
- Möbius, A. F. (1858). Über die Bestimmung des Inhaltes eines Polyëders [On the Determination of the Volume of a Polyhedron]. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften, Mathematisch-Physische Klasse, 17, 31-68.
- Moffatt, H. K. (1969). The degree of knottedness of tangled vortex lines. Journal of Fluid Mechanics, 35(1), 117-129.
- Ricca, R. L., & Berger, M. A. (1996). Topological ideas and fluid mechanics. Physics Today, 49(12), 28-34.
- White, J. H. (1969). Self-linking and the Gauss integral in higher dimensions. American Journal of Mathematics, 91(3), 693-728.
- Yao, J., & Hussain, F. (2020). A physical model of turbulence cascade via vortex reconnection sequence and avalanche. Journal of Fluid Mechanics, 883, DOI:10.1017/jfm.2019.905.
- This document presents a draft theoretical framework conceived to explore the application of topological concepts in fluid mechanics. The models, analogies, and inferences discussed herein are based on established mathematical principles and physical laws, aiming to propose a novel analytical perspective rather than report specific experimental or computational results.
- The referenced concepts, such as the Möbius loop and Hopf link, serve as metaphorical descriptions and formal analogies for the complex topological properties of vortex rings, with the purpose of constructing an illustrative theoretical model. The physical processes discussed, such as vortex reconnection and knot formation, have been observed in numerous prior experiments and numerical simulations.
- The author confirms that this text is solely an exposition of preliminary ideas intended to stimulate academic discussion and collaboration. It is hereby solemnly declared that the content of this document has not been published or presented in any form in any academic journal or conference. Any subsequent in-depth research based on the ideas herein should through standard academic citation practices. Relevant theories, concepts, and data referenced in this paper have been sourced to the best of author's ability, respecting the intellectual property rights of the original authors. Author welcome corrections for any omissions.
 
Search
            Nach Verein filtern
            - Art
- Causes
- Crafts
- Dance
- Drinks
- Film
- Fitness
- Food
- Spiele
- Gardening
- Health
- Home
- Literature
- Music
- Networking
- Other
- Party
- Religion
- Shopping
- Sports
- Theater
- Wellness
Read More
            
        The Disciplinary Reconstruction of Replacing Quantum Materials with Topological Materials Based on Topological Vortex Theory (4)
        
      
                      4. Conclusion and Outlook
The concept of "Quantum Materials," due to its ambiguity, may hinder...
                  
        
      
        中国2025:世界见证规划的力量
        
      
                      每逢重大历史关头,中国共产党总是能够科学把握历史方位与形势变化,制定正确的政治战略策略,指引中国人民战胜无数风险挑战、始终走在时代前列。...
                  
        
      
        山东建筑大学机电工程学院“讴歌美丽 建功乡村”团队 赴高密市开展社会实践活动
        
      
                       
山东建筑大学校领导带队赴高密市
开展社会实践基地签约及访企拓岗活动...
                  
        
      
        HMHS哈麦皇音技术团队
        
      
                      【生产企业】皇音(深圳)技术有限公司(河南运营中心)【驰名品牌】JSL(爵士龙),HMHS(哈麦皇音) 【企业理念】专注于技术,口碑求发展 【...
                  
        
       
                                               
                               
         English
English
             Arabic
Arabic
             French
French
             Spanish
Spanish
             Portuguese
Portuguese
             Turkish
Turkish
             Dutch
Dutch
             Italiano
Italiano
             Russian
Russian
             Romaian
Romaian
             Portuguese (Brazil)
Portuguese (Brazil)
             Greek
Greek
             简体中文
简体中文
             日本語
日本語
             한국어
한국어
             繁体中文
繁体中文