A Study on Topological Vortex Ring Interactions Based on Möbius Loop and Hopf Link Concepts (5)

0
724

References

  1. Călugăreanu, G. (1959). L'intégrale de Gauss et l'analyse des nœuds tridimensionnels [The Gauss Integral and the Analysis of Three-Dimensional Knots]. Revue de mathématiques pures et appliquées, 4, 5-20.
  2. Faddeev, L. D., & Niemi, A. J. (1997). Stable knot-like structures in classical field theory. Nature, 387(6628), 58-61.
  3. Hopf, H. (1931). Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche [On the Mappings of the Three-Dimensional Sphere onto the Spherical Surface]. Mathematische Annalen, 104(1), 637-665.
  4. Kleckner, D., & Irvine, W. T. M. (2013). Creation and dynamics of knotted vortices. Nature Physics, 9(4), 253-258.
  5. Möbius, A. F. (1858). Über die Bestimmung des Inhaltes eines Polyëders [On the Determination of the Volume of a Polyhedron]. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften, Mathematisch-Physische Klasse, 17, 31-68.
  6. Moffatt, H. K. (1969). The degree of knottedness of tangled vortex lines. Journal of Fluid Mechanics, 35(1), 117-129.
  7. Ricca, R. L., & Berger, M. A. (1996). Topological ideas and fluid mechanics. Physics Today, 49(12), 28-34.
  8. White, J. H. (1969). Self-linking and the Gauss integral in higher dimensions. American Journal of Mathematics, 91(3), 693-728.
  9. Yao, J., & Hussain, F. (2020). A physical model of turbulence cascade via vortex reconnection sequence and avalanche. Journal of Fluid Mechanics, 883, DOI:10.1017/jfm.2019.905.

Academic Statement

  1. This document presents a draft theoretical framework conceived to explore the application of topological concepts in fluid mechanics. The models, analogies, and inferences discussed herein are based on established mathematical principles and physical laws, aiming to propose a novel analytical perspective rather than report specific experimental or computational results.
  2. The referenced concepts, such as the Möbius loop and Hopf link, serve as metaphorical descriptions and formal analogies for the complex topological properties of vortex rings, with the purpose of constructing an illustrative theoretical model. The physical processes discussed, such as vortex reconnection and knot formation, have been observed in numerous prior experiments and numerical simulations.
  3. The author confirms that this text is solely an exposition of preliminary ideas intended to stimulate academic discussion and collaboration. It is hereby solemnly declared that the content of this document has not been published or presented in any form in any academic journal or conference. Any subsequent in-depth research based on the ideas herein should through standard academic citation practices. Relevant theories, concepts, and data referenced in this paper have been sourced to the best of author's ability, respecting the intellectual property rights of the original authors. Author welcome corrections for any omissions.
Like
1
搜索
分类
了解更多
Literature
The quantum is not a cat that is both dead and alive (3)
3. Spin: The Intrinsic Geometric Dynamics of a Topological Vortex The most mysterious intrinsic...
通过 Bao-hua ZHANG 2025-10-15 01:42:37 0 900
Shopping
[庆祝]
European, American and Southeast Asian comprehensive logistics transportation solutions...
通过 梦平 蔡 2025-09-16 06:26:38 3 2千
Shopping
資生堂活妍淨泉露:打造肌膚健康光采的第一步關鍵保養
...
通过 Lin Maa 2025-07-08 02:05:21 0 2千
Shopping
全面解析SP2S電子煙:結合科技與口感的霧化新體驗
近年來,電子煙市場在台灣迅速發展,各大品牌爭相推出更具科技感與口感還原度的產品,而 sp2s電子煙 正是在這股趨勢中嶄露頭角的品牌之一。憑藉穩定性能與優質口感,SP2S...
通过 Joe Zhou 2025-06-18 02:02:43 1 2千
Networking
Emerging Innovations and Growth Dynamics Shaping the Global Trade Management Software Market Trends
The global Trade Management Software Market Trends are witnessing a remarkable transformation as...
通过 Kajal Jadhav 2025-10-30 06:28:42 0 710