A Concept for Perpetual Electric Body Based on Topological Vortex Theory Integrating Permanent Magnets and Radioactive Elements (4)

0
792

5. Discussion and Prospect

Despite the significant challenges, the value of this concept lies in its heuristic and forward-looking nature. Observing any sustained electrical signal generated by this triadic coupling that surpasses the noise level in experiments would be a milestone.

Potential application prospects include:

1)Novel Micro-Energy Devices: Providing long-life, maintenance-free "ambient energy harvesters" for Micro-Electro-Mechanical Systems (MEMS) and implantable medical devices.

2)Brain-Inspired Computing and In-Memory Logic: Utilizing the rich dynamic states of topological vortices to simulate neuron and synapse behavior, enabling non-von Neumann computing with low energy consumption.

3)Fundamental Physics Experimental Platform: Providing an ideal model system for studying non-equilibrium statistical physics, topological order, and energy transport.

6. Conclusion

This paper proposes a heuristic concept for constructing a "perpetual electric body" based on topological vortex theory, integrating permanent magnets and radioactive elements. We have argued its theoretical possibility, outlined a path for realization, and deeply analyzed the scientific challenges it faces. This concept does not claim to break the laws of thermodynamics but seeks to explore the possibility of using a continuous external energy source (radioactive decay) to maintain a topologically protected, dynamic non-equilibrium state in an open system. It calls for collaboration among materials scientists, physicists, and chemists to open a new research direction at the intersection of topological materials, nuclear physics, and energy science. Ultimately, the value of the pursuit of the "perpetual electric body" may lie not in reaching the destination, but in the deeper understanding of matter and more innovative technologies that this journey itself will catalyze.

References:

  1. Yadav, A. K., et al. (2016). Observation of polar vortices in oxide superlattices. Nature, 530(7589), 198-201.
  2. Adib Samin, Michael Kurth, Lei R. Cao. An analysis of radiation effects on NdFeB permanent magnets. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 342, 1 (2015), 200-205. https://doi.org/10.1016/j.nimb.2014.10.006.
  3. Li, Q., Stoica, V.A., Paściak, M. et al. Subterahertz collective dynamics of polar vortices. Nature 592, 376–380 (2021). https://doi.org/10.1038/s41586-021-03342-4.
검색
카테고리
더 보기
기타
Welcome to inquire about IC electronic component requirements
Our company is an authorized distributor and spot inventory provider for the three major brands:...
작성자 Anise Ro 2025-09-25 01:11:08 0 1K
Shopping
五金件 冲压件生产中 咨询邮箱 lcz_1818@163.com
 
작성자 臣章 李 2025-07-26 02:52:33 0 2K
Crafts
@Stainless steel cabinet customization manufacturers.
Stainless steel cabinet customization manufacturers.
작성자 fanghao yan 2025-09-26 07:29:16 0 1K
Crafts
Dive into the Enchantment of Crystal River’s Teal Gems
Hey, gem enthusiasts and craft lovers! Let’s take a moment to get lost in the mesmerizing...
작성자 佳航 孙 2025-07-31 14:06:15 0 2K
Literature
An Overview of the Development of Topological Vortex Theory (TVT)
2. The Key Developmental Stages of Topological Vortex Theory (TVT) The development of...
작성자 Bao-hua ZHANG 2025-10-13 04:38:58 0 944